Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.503
Filtrar
1.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467320

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Assuntos
Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígeno Ki-67/metabolismo , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinases Ciclina-Dependentes/uso terapêutico , Ciclofosfamida/farmacologia , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Transaminases , Glutamatos/farmacologia , Glutamatos/uso terapêutico , RNA Mensageiro
2.
Sci Rep ; 14(1): 4366, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388643

RESUMO

Attrition rate is higher in developing nations and it leftovers a major obstacle to enhance the benefits of therapy and achieve the 90-90-90 plan targets. Despite this fact, data on the incidence and its predictors of attrition among human immune deficiency virus infected children on antiretroviral therapy are limited in developing countries including Ethiopia especially after the test and treat strategy implemented. This study aimed to assess the incidence and predictors of attrition among human immune deficiency virus infected children on antiretroviral therapy in Amhara Comprehensive Specialized Hospitals, Northwest Ethiopia. A retrospective follow-up study was conducted among 359 children on ART from June 14, 2014, to June 14, 2022. Study participants were selected using simple random sampling method and the data were collected using Kobo Toolbox software and analysis was done by STATA version 14. Both bi-variable and multivariable Cox regression models were fitted to ascertain predictors. Lastly, an AHR with a 95% CI was computed and variables with a p-value of < 0.05 were took an account statistically key predictors of attrition. The overall incidence of attrition rate was 9.8 (95% CI 7.9, 11.9) per 100 PYO. Children having baseline hemoglobin < 10 mg/dl (AHR 3.94; 95% CI 2.32, 6.7), suboptimal adherence (AHR 1.96; 95% CI 1.23, 3.13), baseline opportunistic infection (AHR 1.8; 95% CI 1.17, 2.96), and children who had experienced drug side effects (AHR 8.3; 95% CI 4.93, 13.84) were established to be a significant predictors of attrition. The attrition rate was relatively high. Decreased hemoglobin, suboptimal adherence, presence of drug side effects and baseline opportunistic infection were predictors of attrition. Therefore, it is crucial to detect and give special emphasis to those identified predictors promptly.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Infecções por HIV , Infecções Oportunistas , Criança , Humanos , HIV , Estudos Retrospectivos , Etiópia/epidemiologia , Seguimentos , Incidência , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Hemoglobinas/farmacologia , Hospitais
3.
J Neuropathol Exp Neurol ; 83(3): 194-204, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230623

RESUMO

Hemorrhagic transformation can complicate ischemic strokes after recanalization treatment within a time window that requires early intervention. To determine potential therapeutic effects of matrilin-3, rat cerebral ischemia-reperfusion was produced using transient middle cerebral artery occlusion (tMCAO); intracranial hemorrhage and infarct volumes were assayed through hemoglobin determination and 2,3,5-triphenyltetrazoliumchloride (TTC) staining, respectively. Oxygen-glucose deprivation (OGD) modeling of ischemia was performed on C8-D1A cells. Interactions between matrilin-3 and YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) were determined using RNA immunoprecipitation assay and actinomycin D treatment. Reperfusion after tMCAO modeling increased hemorrhage, hemoglobin content, and infarct volumes; these were alleviated by matrilin treatment. Matrilin-3 was expressed at low levels and YTHDF2 was expressed at high levels in ischemic brains. In OGD-induced cells, matrilin-3 was negatively regulated by YTHDF2. Matrilin-3 overexpression downregulated p-PI3K/PI3K, p-AKT/AKT, ZO-1, VE-cadherin and occludin, and upregulated p-JNK/JNK in ischemic rat brains; these effects were reversed by LY294002 (a PI3K inhibitor). YTHDF2 knockdown inactivated the PI3K/AKT pathway, inhibited inflammation and decreased blood-brain barrier-related protein levels in cells; these effects were reversed by matrilin-3 deficiency. These results indicate that YTHDF2-regulated matrilin-3 protected ischemic rats against post-reperfusion hemorrhagic transformation via the PI3K/AKT pathway and that matrilin may have therapeutic potential in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Matrilinas/farmacologia , Proteínas Matrilinas/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Hemorragia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição , Reperfusão , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico
4.
Eur J Med Chem ; 264: 115969, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039787

RESUMO

The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/química , Piperazina/farmacologia , Triazóis/química , Cloroquina/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico
5.
Exp Neurol ; 372: 114574, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852468

RESUMO

Neonatal intraventricular hemorrhage (IVH) releases blood products into the lateral ventricles and brain parenchyma. There are currently no medical treatments for IVH and surgery is used to treat a delayed effect of IVH, post-hemorrhagic hydrocephalus. However, surgery is not a cure for intrinsic brain injury from IVH, and is performed in a subacute time frame. Like many neurological diseases and injuries, innate immune activation is implicated in the pathogenesis of IVH. Innate immune activation is a pharmaceutically targetable mechanism to reduce brain injury and post-hemorrhagic hydrocephalus after IVH. Here, we tested the macrolide antibiotic azithromycin, which has immunomodulatory properties, to reduce innate immune activation in an in vitro model of microglial activation using the blood product hemoglobin (Hgb). We then utilized azithromycin in our in vivo model of IVH, using intraventricular blood injection into the lateral ventricle of post-natal day 5 rat pups. In both models, azithromycin modulated innate immune activation by several outcome measures including mitochondrial bioenergetic analysis, cytokine expression and flow cytometric analysis. This suggests that azithromycin, which is safe for neonates, could hold promise for modulating innate immune activation after IVH.


Assuntos
Lesões Encefálicas , Hidrocefalia , Ratos , Animais , Azitromicina/farmacologia , Encéfalo/patologia , Hemorragia Cerebral/patologia , Hidrocefalia/etiologia , Lesões Encefálicas/patologia , Hemoglobinas/farmacologia
6.
J Ethnopharmacol ; 319(Pt 3): 117335, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863400

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Early brain damage (EBI) following subarachnoid hemorrhage (SAH) is a long-lasting condition with a high occurrence. However, treatment options are restricted. Wu-zhu-yu Decoction (WZYD) can treat headaches and vomiting, which are similar to the early symptoms of subarachnoid hemorrhage (SAH). However, it is yet unknown if WZYD can reduce EBI following SAH and its underlying mechanisms. AIM OF THE STUDY: This study aimed to investigate whether WZYD protects against EBI following SAH by inhibiting oxidative stress through activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling via Sirtuin 6 (SIRT6)-mediated histone H3 lysine 56 (H3K56) deacetylation. MATERIALS AND METHODS: In the current investigation, the principal components of WZYD were identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). The SAH model in rats using the internal carotid artery plug puncture approach and the SAH model in primary neurons using hemoglobin incubation were developed. WZYD with different doses (137 mg kg-1, 274 mg kg-1, 548 mg kg-1) and the positive drug-Nimodipine (40 mg kg-1) were intragastrically administered in SAH model rats, respectively. The PC12 cells were cultured with corresponding medicated for 24h. In our investigation, neurological scores, brain water content, Evans blue leakage, Nissl staining, TUNEL staining, oxidative stress, expression of apoptosis-related proteins, and Nrf2/HO-1 signaling were evaluated. The interaction between SIRT6 and Nrf2 was detected by co-immunoprecipitation. SIRT6 knockdown was used to confirm its role in WZYD's neuroprotection. RESULTS: The WZYD treatment dramatically reduced cerebral hemorrhage and edema, and enhanced neurological results in EBI following SAH rats. WZYD administration inhibited neuronal apoptosis via reducing the expression levels of Cleaved cysteinyl aspartate specific proteinase-3(Cleaved Caspase-3), cysteinyl aspartate specific proteinase-3(caspase-3), and Bcl-2, Associated X Protein (Bax) and increasing the expression of B-cell lymphoma-2(Bal2). It also decreased reactive oxygen species and malondialdehyde levels and increased Nrf2 and HO-1 expression in the rat brain after SAH. In vitro, WZYD attenuated hemoglobin-induced cytotoxicity, oxidative stress and apoptosis in primary neurons. Mechanistically, WZYD enhanced SIRT6 expression and H3K56 deacetylation, activated Nrf2/HO-1 signaling, and promoted the interaction between SIRT6 and Nrf2. Knockdown of SIRT6 abolished WZYD-induced neuroprotection. CONCLUSIONS: WZYD attenuates EBI after SAH by activating Nrf2/HO-1 signaling through SIRT6-mediated H3K56 deacetylation, suggesting its therapeutic potential for SAH treatment.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Sirtuínas , Hemorragia Subaracnóidea , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3 , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Ácido Aspártico/farmacologia , Ácido Aspártico/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Apoptose , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942584

RESUMO

Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Células Endoteliais/metabolismo , Rim/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Hemoglobinas/farmacologia , Hemoglobinas/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Injúria Renal Aguda/tratamento farmacológico
8.
Sci Rep ; 13(1): 19735, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957227

RESUMO

The chemical classes of semicarbazones, thiosemicarbazones, and hydrazones are present in various compounds, each demonstrating diverse biological activities. Extensive studies have revealed their potential as schistosomicidal agents. Thiosemicarbazones, in particular, have shown inhibitory effects on Schistosoma mansoni's cathepsin B1 enzyme (SmCB1), which plays a crucial role in hemoglobin degradation within the worm's gut and its nutrition processes. Consequently, SmCB1 has emerged as a promising target for novel schistosomiasis therapies. Moreover, chloroquinoline exhibits characteristics in its aromatic structure that hold promise for developing SmCB1 inhibitors, along with its interaction with hemoglobin's heme group, potentially synergizing against the parasite's gut. In this context, we report the synthesis of 22 hybrid analogs combining hydrazones and quinolines, evaluated against S. mansoni. Five of these hybrids demonstrated schistosomicidal activity in vitro, with GPQF-8Q10 being the most effective, causing worm mortality within 24 h at a concentration of 25 µM. GPQF-8Q8 proved to be the most promising in vivo, significantly reducing egg presence in feces (by 52.8%) and immature eggs in intestines (by 45.8%). These compounds exhibited low cytotoxicity in Vero cells and an in in vivo animal model (Caenorhabditis elegans), indicating a favorable selectivity index. This suggests their potential for the development of new schistosomiasis therapies. Further studies are needed to uncover specific target mechanisms, but these findings offer a promising starting point.


Assuntos
Esquistossomose mansoni , Esquistossomose , Esquistossomicidas , Tiossemicarbazonas , Animais , Chlorocebus aethiops , Schistosoma mansoni , Células Vero , Esquistossomicidas/farmacologia , Tiossemicarbazonas/farmacologia , Hidrazonas/farmacologia , Hemoglobinas/farmacologia , Esquistossomose mansoni/tratamento farmacológico
9.
Sci Rep ; 13(1): 16096, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752188

RESUMO

Antimicrobial resistance is a growing health concern. Antimicrobial peptides are a potential solution because they bypass conventional drug resistance mechanisms. Previously, we isolated a peptide from Crocodylus siamensis hemoglobin hydrolysate, which has antimicrobial activity and identified the main peptide from this mixture (QL17). The objective of this work was to evaluate and rationally modify QL17 in order to: (1) control its mechanism of action through bacterial membrane disruption; (2) improve its antimicrobial activity; and (3) ensure it has low cytotoxicity against normal eukaryotic cells. QL17 was rationally designed using physicochemical and template-based methods. These new peptide variants were assessed for: (1) their in vitro inhibition of microbial growth, (2) their cytotoxicity against normal cells, (3) their selectivity for microbes, and (4) the mode of action against bacteria using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal microscopy. The results indicate that all designed peptides have more potent antimicrobial efficacy than QL17 and IL15 peptides. However, only the most rationally modified peptides showed strong antimicrobial activity and minimal toxicity against normal cells. In particular, IL15.3 (hydrophobicity of 47% and net charge of + 6) was a potent antimicrobial agent (MIC = 4-12 µg/mL; MBC = 6-25 µg/mL) and displayed excellent selectivity for microbes (cf. human cells) via FACS assays. Microscopy confirmed that IL15.3 acts against bacteria by disrupting the cell membrane integrity and penetrating into the membrane. This causes the release of intracellular content into the outer environment leading to the death of bacteria. Moreover, IL15.3 can also interact with DNA suggesting it could have dual mode of action. Overall, a novel variant of QL17 is described that increases antimicrobial activity by over 1000-fold (~ 5 µg/mL MIC) and has minimal cytotoxicity. It may have applications in clinical use to treat and safeguard against bacteria.


Assuntos
Jacarés e Crocodilos , Peptídeos Antimicrobianos , Humanos , Animais , Interleucina-15 , Peptídeos/farmacologia , Hemoglobinas/farmacologia
10.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685861

RESUMO

This study focuses on the enzymatic hydrolysis of hemoglobin, the main component of cruor that gives blood its red color in mammals. The antibacterial and antioxidant potentials of human hemoglobin hydrolysates were evaluated in comparison to bovine hemoglobin. The results showed strong antimicrobial activity of the peptide hydrolysates against six bacterial strains, independent of the initial substrate concentration level. The hydrolysates also showed strong antioxidant activity, as measured by four different tests. In addition, the antimicrobial and antioxidant activities of the human and bovine hemoglobin hydrolysates showed little or no significant difference, with only the concentration level being the determining factor in their activity. The results of the mass spectrometry study showed the presence of a number of bioactive peptides, the majority of which have characteristics similar to those mentioned in the literature. New bioactive peptides were also identified in human hemoglobin, such as the antibacterial peptides PTTKTYFPHF (α37-46), FPTTKTYFPH (α36-45), TSKYR (α137-141), and STVLTSKYR (α133-141), as well as the antioxidant TSKYR (α137-141). According to these findings, human hemoglobin represents a promising source of bioactive peptides beneficial to the food or pharmaceutical industries.


Assuntos
Anti-Infecciosos , Antioxidantes , Animais , Humanos , Antioxidantes/farmacologia , Hidrólise , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Hemoglobinas/farmacologia , Peptídeos/farmacologia , Mamíferos
11.
J Neurochem ; 167(1): 90-103, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37702203

RESUMO

During subarachnoid haemorrhage, a blood clot forms in the subarachnoid space releasing extracellular haemoglobin (Hb), which causes oxidative damage and cell death in surrounding tissues. High rates of disability and cognitive decline in SAH survivors are attributed to loss of neurons and functional connections during secondary brain injury. Haptoglobin sequesters Hb for clearance, but this scavenging system is overwhelmed after a haemorrhage. Whilst exogenous haptoglobin application can attenuate cytotoxicity of Hb in vitro and in vivo, the functional effects of sub-lethal Hb concentrations on surviving neurons and whether cellular function can be protected with haptoglobin treatment remain unclear. Here we use cultured neurons to investigate neuronal health and function across a range of Hb concentrations to establish the thresholds for cellular damage and investigate synaptic function. Hb impairs ATP concentrations and cytoskeletal structure. At clinically relevant but sub-lethal Hb concentrations, we find that synaptic AMPAR-driven currents are reduced, accompanied by a reduction in GluA1 subunit expression. Haptoglobin co-application can prevent these deficits by scavenging free Hb to reduce it to sub-threshold concentrations and does not need to be present at stoichiometric amounts to achieve efficacy. Haptoglobin itself does not impair measures of neuronal health and function at any concentration tested. Our data highlight a role for Hb in modifying synaptic function in surviving neurons, which may link to impaired cognition or plasticity after SAH and support the development of haptoglobin as a therapy for subarachnoid haemorrhage.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Humanos , Haptoglobinas/farmacologia , Haptoglobinas/uso terapêutico , Hemorragia Subaracnóidea/metabolismo , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Neurônios/metabolismo , Lesões Encefálicas/metabolismo
12.
Brain Res ; 1821: 148592, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748569

RESUMO

The application of hemoglobin (Hb)-based oxygen carriers (HBOCs) to the treatment of cerebral ischemia has been investigated. A cluster of 1 Hb and 3 human serum albumins (Hb-HSA3) was found to exert neuroprotective effects on ischemia/reperfusion injury. Stroma-free hemoglobin nanoparticles (SFHbNP), a subsequently developed HBOC consisting of a spherical polymerized stroma-free Hb core with a HSA shell, contains the natural antioxidant enzyme catalase and, thus, is expected to exert additive effects. We herein investigated whether SFHbNP exerted enhanced neuroprotective effects in a rat transient middle cerebral artery occlusion (tMCAO) model. Rats were subjected to 2-hour tMCAO and divided into the following 3 groups with the intravenous administration of the respective reagents: (1) phosphate-buffered saline (PBS), as a vehicle (2) Hb-HSA3, and (3) SFHbNP. After 24-hour reperfusion, infarct and edema volumes decreased in the order of the PBS, Hb-HSA3, and SFHbNP groups, with a significant difference (p < 0.05) between the PBS and SFHbNP groups. Similar reductions were observed in oxidative stress, leukocyte recruitment, and blood-brain barrier disruption in the order of the PBS, Hb-HSA3, and SFHbNP groups. In the early phase of reperfusion within 6 h, microvascular HBOC perfusion and cerebral blood flow were maintained at high levels during the reperfusion period in the Hb-HSA3 and SFHbNP groups. However, a difference was observed in tissue oxygen partial pressure levels, which significantly decreased after 6-hour reperfusion in the Hb-HSA3 group, but remained high in the SFHbNP group. A superior oxygen transport ability appears to be related to the enhanced neuroprotective effects of SFHbNP.


Assuntos
Isquemia Encefálica , Nanopartículas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Oxigênio , Fármacos Neuroprotetores/farmacologia , Hemoglobinas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
13.
ACS Appl Bio Mater ; 6(8): 3330-3340, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504970

RESUMO

Hemoglobin wrapped covalently with poly(2-ethyl-2-oxazoline)s (POx-Hb) is characterized physicochemically and physiologically as an artificial O2 carrier for use as a red blood cell (RBC) substitute. The POx-Hb is generated by linkage of porcine Hb surface-lysines to a sulfhydryl terminus of the POx derivative, with the average binding number of the polymers ascertained as 6. The POx-Hb shows moderately higher colloid osmotic activity and O2 affinity than the naked Hb. Human adult HbA conjugated with POx also possesses equivalent features and O2 binding properties. The POx-Hb solution exhibits good hemocompatibility, with no influence on the functions of platelets, granulocytes, and monocytes. Its circulation half-life in rats is 14 times longer than that of naked Hb. Hemorrhagic shock in rats is relieved sufficiently by infusion of the POx-Hb solution, as revealed by improvements of circulatory parameters. Serum biochemistry tests and histopathological observations indicate no acute toxicity or abnormality in the related organs. All results indicate that POx-Hb represents an attractive alternative for RBCs and a useful O2 therapeutic reagent in transfusion medicine.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Ratos , Humanos , Animais , Suínos , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Hemoglobinas/química , Eritrócitos/metabolismo , Oxazóis/metabolismo , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/química , Substitutos Sanguíneos/metabolismo
14.
Small ; 19(47): e2303615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501326

RESUMO

Current research on hemostatic materials have focused on the inhibition of visible hemorrhage, however, invisible hemorrhage is the unavoidable internal bleeding that occurs after trauma or surgery, leading directly to a dramatic drop in hemoglobin and then to anemia and even death. In this study, bacterial nanocellulose (BNC) was synthesized and oxidized from the primary alcohols to carboxyl groups, and then grafted with tranexamic acid through amide bonds to construct degradable nanoscale short fibers (OBNC-TXA), which rapidly activated the coagulation response. The hemostatic material is made up of nanoscale short fibers that can be constructed into different forms such as emulsions, gels, powders, and sponges to meet different clinical applications. In the hemostatic experiments in vitro, the composites had significantly superior pro-coagulant properties due to the rapid aggregation of blood cells. In the coagulation experiments with rat tail amputation and liver trauma hemorrhage models, the group treated with OBNC-TXA1 sponge showed low hemorrhage and inhibited invisible hemorrhage in rectus abdominis muscle defect hemorrhage models, with a rapid recovery of hemoglobin values from 128±5.5 to 165±2.6 g L-1 within 4 days. In conclusion, the degradable short fibers constructed from bacterial nano-cellulose achieved inhibition of invisible hemorrhage in vivo.


Assuntos
Hemostáticos , Hepatopatias , Ácido Tranexâmico , Ratos , Animais , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/uso terapêutico , Hemorragia/tratamento farmacológico , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Coagulação Sanguínea , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico
15.
Pestic Biochem Physiol ; 193: 105453, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248021

RESUMO

Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 µM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.


Assuntos
Antioxidantes , Eritrócitos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Estresse Oxidativo , Oxirredução
16.
Nanoscale ; 15(19): 8832-8844, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37114464

RESUMO

Due to several limitations associated with blood transfusion, such as the relatively short shelf life of stored blood, low risk of developing acute immune hemolytic reactions and graft-versus-host disease, many strategies have been developed to synthesize hemoglobin-based oxygen carriers (HBOCs) as universal red blood cell (RBC) substitutes. Recently, zeolite imidazole framework-8 (ZIF-8), a metal-organic framework, has attracted considerable attention as a protective scaffold for encapsulation of hemoglobin (Hb). Despite the exceptional thermal and chemical stability of ZIF-8, the major impediments to implementing ZIF-8 for Hb encapsulation are the structural distortions associated with loading large quantities of Hb in the scaffold as the Hb molecule has a larger hydrodynamic diameter than the pore size of ZIF-8. Therefore to reduce the structural distortion caused by Hb encapsulation, we established and optimized a continuous-injection method to synthesize nanoparticle (NP) encapsulated polymerized bovine Hb (PolybHb) using ZIF-8 precursors (ZIF-8P-PolybHb NPs). The synthesis method was further modified by adding EDTA as a chelating agent, which reduced the ZIF-8P-PolybHb NP size to <300 nm. ZIF-8P-PolybHb NPs exhibited lower oxygen affinity (36.4 ± 3.2 mm Hg) compared to unmodified bovine Hb, but was similar in magnitude to unencapsulated PolybHb. The use of the chemical cross-linker glutaraldehyde to polymerize bovine Hb resulted in the low Hill coefficient of PolybHb, indicating loss of Hb's oxygen binding cooperativity, which could be a limitation when using PolybHb as an oxygen carrier for encapsulation inside the ZIF-8 matrix. ZIF-8P-PolybHb NPs exhibited slower oxygen offloading kinetics compared to unencapsulated PolybHb, demonstrating successful encapsulation of PolybHb. ZIF-8P-PolybHb NPs also exhibited favorable antioxidant properties when exposed to H2O2. Incorporation of PolybHb into the ZIF-8 scaffold resulted in reduced cytotoxicity towards human umbilical vein endothelial cells compared to unloaded ZIF-8 NPs and ZIF-8 NPs loaded with bovine Hb. We envisage that such a monodisperse and biocompatible HBOC with low oxygen affinity and antioxidant properties may broaden its use as an RBC substitute.


Assuntos
Substitutos Sanguíneos , Estruturas Metalorgânicas , Nanopartículas , Zeolitas , Humanos , Estruturas Metalorgânicas/farmacologia , Antioxidantes/farmacologia , Zeolitas/farmacologia , Células Endoteliais/metabolismo , Peróxido de Hidrogênio , Hemoglobinas/farmacologia , Hemoglobinas/química , Imidazóis , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/química , Oxigênio/química , Eritrócitos/metabolismo
17.
Curr Pharm Biotechnol ; 24(15): 1928-1937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005550

RESUMO

INTRODUCTION: During the preparation of polyHb-SOD-CAT-CA, the lysate was extracted by toluene. However, due to its serious toxicity and potential application in the production of dangerous explosives, the use of toluene would likely be a restriction of the industrial development of polyHb-SOD-CAT-CA. So, selecting other extraction reagents as alternatives to toluene is necessary to promote the industrialization of polyHb-SOD-CAT-CA. AIMS: The objective of this study is to investigate the application of several organic solvents extraction during polyHb-SOC-CAT-CA preparation process, which include n-haxane and diethyl ether, and also to compare with the existing toluene. METHODS: After extraction with different extractants, the effects of studied organic extractant on the stability of hemoglobin and enzymes include SOD, CAT and CA through monitoring the property indexes include Hb concentration, MetHb content, oxygen affinity of Hb, enzymes activities and so on. RESULTS: The P50 and Hill coefficient of n-hexane group were higher than that in diethyl ether group and toluene group. The MetHb contents, Hb recoveries and enzymes recoveries of n-hexane group and toluene group were much better than that in diethyl ether group. The SOD activity recovery rate in n-hexane experimental group was slightly lower than that in toluene group. However, the CAT and CA recovery rate of n-hexane group was higher than that in toluene group. CONCLUSION: The results of this study suggested that the effects of n-hexane on the properties stability and productivity of polyHb-SOD-CAT-CA were nearly similar with that of toluene, indicating potential reliability and feasibility of n-hexane in the future research and development of polyHb- SOD-CAT-CA.


Assuntos
Substitutos Sanguíneos , Éter , Reprodutibilidade dos Testes , Substitutos Sanguíneos/farmacologia , Hemoglobinas/farmacologia , Superóxido Dismutase , Tecnologia
18.
Shock ; 60(1): 51-55, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071071

RESUMO

ABSTRACT: During and immediately after cardiac arrest, cerebral oxygen delivery is impaired mainly by microthrombi and cerebral vasoconstriction. This may narrow capillaries so much that it might impede the flow of red blood cells and thus oxygen transport. The aim of this proof-of-concept study was to evaluate the effect of M101, an extracellular hemoglobin-based oxygen carrier (Hemarina SA, Morlaix, France) derived from Arenicola marina , applied during cardiac arrest in a rodent model, on markers of brain inflammation, brain damage, and regional cerebral oxygen saturation. Twenty-seven Wistar rats subjected to 6 min of asystolic cardiac arrest were infused M101 (300 mg/kg) or placebo (NaCl 0.9%) concomitantly with start of cardiopulmonary resuscitation. Brain oxygenation and five biomarkers of inflammation and brain damage (from blood, cerebrospinal fluid, and homogenates from four brain regions) were measured 8 h after return of spontaneous circulation. In these 21 different measurements, M101-treated animals were not significantly different from controls except for phospho-tau only in single cerebellum regions ( P = 0.048; ANOVA of all brain regions: P = 0.004). Arterial blood pressure increased significantly only at 4 to 8 min after return of spontaneous circulation ( P < 0.001) and acidosis decreased ( P = 0.009). While M101 applied during cardiac arrest did not significantly change inflammation or brain oxygenation, the data suggest cerebral damage reduction due to hypoxic brain injury, measured by phospho-tau. Global burden of ischemia appeared reduced because acidosis was less severe. Whether postcardiac arrest infusion of M101 improves brain oxygenation is unknown and needs to be investigated.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Ratos , Animais , Roedores , Ratos Wistar , Parada Cardíaca/tratamento farmacológico , Oxigênio/farmacologia , Hemoglobinas/farmacologia , Circulação Cerebrovascular/fisiologia
19.
Curr Med Sci ; 43(2): 232-245, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36890335

RESUMO

OBJECTIVE: Shock heart syndrome (SHS) is associated with lethal arrhythmias (ventricular tachycardia/ventricular fibrillation, VT/VF). We investigated whether liposome-encapsulated human hemoglobin vesicles (HbVs) has comparable persistent efficacy to washed red blood cells (wRBCs) for improving arrhythmogenesis in the subacute to chronic phase of SHS. METHODS: Optical mapping analysis (OMP), electrophysiological study (EPS), and pathological examinations were performed on blood samples from Sprague-Dawley rats following induction of hemorrhagic shock. After hemorrhagic shock, the rats were immediately resuscitated by transfusing 5% albumin (ALB), HbV, or wRBCs. All rats survived for 1 week. OMP and EPS were performed on Langendorff-perfused hearts. Spontaneous arrhythmias and heart rate variability (HRV) were evaluated using awake 24-h telemetry, cardiac function by echocardiography, and pathological examination of Connexin43. RESULTS: OMP showed significantly impaired action potential duration dispersion (APDd) in the left ventricle (LV) in the ALB group whereas APDd was substantially preserved in the HbV and wRBCs groups. Sustained VT/VF was easily provoked by EPS in the ALB group. No VT/VF was induced in the HbV and wRBCs groups. HRV, spontaneous arrhythmias, and cardiac function were preserved in the HbV and wRBCs groups. Pathology showed myocardial cell damage and Connexin43 degradation in the ALB group, all of which were attenuated in the HbV and wRBCs groups. CONCLUSION: LV remodeling after hemorrhagic shock caused VT/VF in the presence of impaired APDd. Similar to wRBCs, HbV persistently prevented VT/VF by inhibiting persistent electrical remodeling, preserving myocardial structures, and ameliorating arrhythmogenic modifying factors in the subacute to chronic phase of hemorrhagic shock-induced SHS.


Assuntos
Remodelamento Atrial , Choque Hemorrágico , Ratos , Humanos , Animais , Conexina 43 , Antiarrítmicos , Ratos Sprague-Dawley , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Hemoglobinas/farmacologia , Fibrilação Ventricular/tratamento farmacológico , Fibrilação Ventricular/etiologia , Arritmias Cardíacas/tratamento farmacológico
20.
Biophys J ; 122(3): 484-495, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36588342

RESUMO

The vital function of red blood cells (RBCs) is to mediate the transport of oxygen from lungs to tissues and of CO2 from tissues to lungs. The gas exchanges occur during capillary transits within fractions of a second. Each oxygenation-deoxygenation and deoxygenation-reoxygenation transition on hemoglobin triggers sharp changes in RBC pH, leading to downstream changes in ion fluxes, membrane potential, and cell volume. The dynamics of these changes during the variable periods between capillary transits in vivo remains a mystery inaccessible to study by current methodologies, a knowledge gap on a fundamental physiological process that is the focus of the present study. The use of a computational model of human RBC homeostasis of tested accreditation enabled a detailed investigation of the expected RBC changes during intercapillary transits, with results advancing novel insights and predictions. The predicted rates of relative RBC volume change on oxygenation-deoxygenation (oxy-deoxy) and deoxygenation-reoxygenation transitions were about 1.5%/min and -0.9%/min, respectively, far too slow to allow the cells to reach steady states in the intervals between capillary transits. The amplitude of the oxy-deoxy-reoxygenation volume fluctuations varied in proportion with the duration of the intercapillary transit intervals. Upon capillary entry, oxy-deoxy-induced changes occur concurrently with deformation-induced PIEZO1 channel activation, both processes affecting cell pH, membrane potential, and cell volume during intertransit periods. The model showed that the effects were strictly additive as expected from processes operating independently on the cell's homeostatic fabric. Analysis of the mechanisms behind these predictions revealed, for the first time, the complex interactions between oxy-deoxy and ion transport processes that ensure the long-term homeostatic stability of RBCs for optimal gas transport in physiological conditions and how these may become altered in diseased states. Possible designs of microfluidic devices to test the model predictions are discussed.


Assuntos
Eritrócitos , Hemoglobinas , Humanos , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Oxigênio/metabolismo , Transporte Biológico , Homeostase , Canais Iônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...